Webinars

Webinars

Live Webinars

Scattergraph Principles and Practice

PART 5 - Subcritical and Supercritical Flow
June 2, 2020 @ 12 Noon EDT, 11 AM CDT, 10 AM MDT, 9AM PDT
The scattergraph is a powerful tool that displays depth and velocity data from a sewer flow monitor, and the resulting patterns form characteristic signatures that provide insight into conditions within a sewer. The Scattergraph Principles and Practice webinar series is designed as an educational resource for wastewater professionals to understand how to use scattergraphs to recognize various flow conditions and understand how they impact sewer capacity and performance. This topic will be covered in a multi-part series.

Presentation Duration: Estimated 1 hour

The purpose of Part 5 is to discuss the practical application of the Froude Number to flow monitoring. Engineers are aware of the instability associated with critical flow conditions and are generally advised to avoid them during sewer design. However, such conditions are often encountered in existing sewers and can impact the reliability of flow monitor data. The Froude number (Fr) is a dimensionless number used to describe flow conditions within a sewer. These conditions can be illustrated on a scattergraph using iso-Froude lines. Certain flow conditions such as hydraulic jumps, sewer bores, and undular jumps are readily identified by evaluating flow monitor data with respect to iso-Froude lines. Practical examples from flow monitor locations are provided, demonstrating the scattergraph signatures of various transcritical and near-critical phenomena. Flow monitors can operate well in sewers under subcritical and supercritical condition, but accuracy may deteriorate near the transition. Such conditions should be avoided when possible in flow monitoring applications.
Did You Miss the Early Parts of this Webinar Series?

Request Access to Webinar Archive:

The purpose of Part 1 is to provide a basic understanding of scattergraphs, including the fundamentals on which they are built. An overview of uniform flow conditions is provided, as well as the Manning Equation that represents them. Insights that can be gained by viewing flow monitor data through the lens of the Manning Equation will also be discussed. Important things can be learned by noting when they agree and when they disagree. These fundamentals provide a basic understanding of scattergraphs and serve as building blocks to more advanced principles to follow in this webinar series.

The purpose of Part 2 is to discuss backwater and surcharge conditions in sewers, including how to recognize them in scattergraphs of flow monitor data. Iso-Quantity or iso-Q™ lines will be introduced and used to demonstrate the effects backwater and surcharge conditions have on sewer capacity and sewer performance.
Sewer overflows pose a significant threat to public health and the environment, contributing to beach closures, contamination of drinking water, and other concerns. Knowing when and where they occur – as well as their duration, volume, and frequency – are important pieces of information needed to assess their impact and minimize their future occurrence. The purpose of Part 3 is to discuss sanitary sewer overflows (SSOs) and combined sewer overflows (CSOs), including how to recognize them in scattergraphs of flow monitor data. Practical examples from flow monitor locations throughout the United States are provided, demonstrating the scattergraph signatures of SSOs and combined sewer overflows CSOs under various conditions. Techniques are also developed to estimate their duration and volume from flow monitor data.
The purpose of Part 4 is to discuss how to evaluate the performance of pump stations, siphons, valves, and related structures under certain conditions. A flow monitor located upstream from such structures can provide important information about their operating characteristics. This information is revealed any time a flow monitor operates within backwater conditions influenced by them. The addition of iso-Q™ lines to a scattergraph allows their actual performance to be compared to anticipated performance. Practical examples from flow monitor locations throughout the United States are provided, demonstrating the scattergraph signatures of approach conditions to them.
Kevin Enfinger, P.E.

Kevin is a Product Manager at ADS Environmental Services with 25 years of experience in environmental engineering and consulting. He holds a Bachelor of Science in Chemical Engineering from the University of Florida and is a member of the American Society of Civil Engineers and the Water Environment Federation.

Register for the Free Webinar

Scattergraph Principles and Practice - Part 5



YesNo



Scattergraph Principles and Practice

PART 6 - Flow Monitor Performance
June 16, 2020 @ 12 Noon EDT, 11 AM CDT, 10 AM MDT, 9AM PDT
The scattergraph is a powerful tool that displays depth and velocity data from a sewer flow monitor, and the resulting patterns form characteristic signatures that provide insight into conditions within a sewer. The Scattergraph Principles and Practice webinar series is designed as an educational resource for wastewater professionals to understand how to use scattergraphs to recognize various flow conditions and understand how they impact sewer capacity and performance. This topic will be covered in a multi-part series.

Presentation Duration: Estimated 1 hour

The purpose of Part 5 is to discuss the practical application of the Froude Number to flow monitoring. Engineers are aware of the instability associated with critical flow conditions and are generally advised to avoid them during sewer design. However, such conditions are often encountered in existing sewers and can impact the reliability of flow monitor data. The Froude number (Fr) is a dimensionless number used to describe flow conditions within a sewer. These conditions can be illustrated on a scattergraph using iso-Froude lines. Certain flow conditions such as hydraulic jumps, sewer bores, and undular jumps are readily identified by evaluating flow monitor data with respect to iso-Froude lines. Practical examples from flow monitor locations are provided, demonstrating the scattergraph signatures of various transcritical and near-critical phenomena. Flow monitors can operate well in sewers under subcritical and supercritical condition, but accuracy may deteriorate near the transition. Such conditions should be avoided when possible in flow monitoring applications.
Did You Miss the Early Parts of this Webinar Series?

Request Access to Webinar Archive:

The purpose of Part 1 is to provide a basic understanding of scattergraphs, including the fundamentals on which they are built. An overview of uniform flow conditions is provided, as well as the Manning Equation that represents them. Insights that can be gained by viewing flow monitor data through the lens of the Manning Equation will also be discussed. Important things can be learned by noting when they agree and when they disagree. These fundamentals provide a basic understanding of scattergraphs and serve as building blocks to more advanced principles to follow in this webinar series.

The purpose of Part 2 is to discuss backwater and surcharge conditions in sewers, including how to recognize them in scattergraphs of flow monitor data. Iso-Quantity or iso-Q™ lines will be introduced and used to demonstrate the effects backwater and surcharge conditions have on sewer capacity and sewer performance.
Sewer overflows pose a significant threat to public health and the environment, contributing to beach closures, contamination of drinking water, and other concerns. Knowing when and where they occur – as well as their duration, volume, and frequency – are important pieces of information needed to assess their impact and minimize their future occurrence. The purpose of Part 3 is to discuss sanitary sewer overflows (SSOs) and combined sewer overflows (CSOs), including how to recognize them in scattergraphs of flow monitor data. Practical examples from flow monitor locations throughout the United States are provided, demonstrating the scattergraph signatures of SSOs and combined sewer overflows CSOs under various conditions. Techniques are also developed to estimate their duration and volume from flow monitor data.
The purpose of Part 4 is to discuss how to evaluate the performance of pump stations, siphons, valves, and related structures under certain conditions. A flow monitor located upstream from such structures can provide important information about their operating characteristics. This information is revealed any time a flow monitor operates within backwater conditions influenced by them. The addition of iso-Q™ lines to a scattergraph allows their actual performance to be compared to anticipated performance. Practical examples from flow monitor locations throughout the United States are provided, demonstrating the scattergraph signatures of approach conditions to them.

The purpose of Part 5 is to discuss the practical application of the Froude Number to flow monitoring. Engineers are aware of the instability associated with critical flow conditions and are generally advised to avoid them during sewer design. However, such conditions are often encountered in existing sewers and can impact the reliability of flow monitor data.
The Froude number (Fr) is a dimensionless number used to describe flow conditions within a sewer. These conditions can be illustrated on a scattergraph using iso-Froude lines. Certain flow conditions such as hydraulic jumps, sewer bores, and undular jumps are readily identified by evaluating flow monitor data with respect to iso-Froude lines. Practical examples from flow monitor locations are provided, demonstrating the scattergraph signatures of various transcritical and near-critical phenomena. Flow monitors can operate well in sewers under subcritical and supercritical condition, but accuracy may deteriorate near the transition. Such conditions should be avoided when possible in flow monitoring applications.

Kevin Enfinger, P.E.

Kevin is a Product Manager at ADS Environmental Services with 25 years of experience in environmental engineering and consulting. He holds a Bachelor of Science in Chemical Engineering from the University of Florida and is a member of the American Society of Civil Engineers and the Water Environment Federation.

Register for the Free Webinar

Scattergraph Principles and Practice - Part 6



YesNo



Take a peek at some of the webinars in the archive. Request access to all past ADS Webinars.

SPEAKER: Kevin Enfinger, P.E.
Important engineering decisions are made every day regarding sanitary sewer, combined sewer, and storm sewer systems and often require the use of rainfall data. See how selecting the right equipment in the right quantities for your local rainfall conditions and your specific applications will lead to a successful rainfall monitoring program.

SLiiCER - I/I Analytics for the Next Generation
SPEAKER: Kevin Enfinger, P.E.   SLiiCER™ makes it easy to evaluate your entire collection system as a single solution, tracking down I/I to guide rehabilitation programs, eliminate overflows, and validate results.
Lower Costs, Lower Risk – New Relief Through Optimized Cleaning

SPEAKER: Jay Boyd
Optimize Cleaning – See how new technologies are helping municipalities reduce cleaning by up to 80%, safeguard against SSOs with 24/7 monitoring, and avoid harmful side-effects of overcleaning.